
Chesapeake Chapter INCOSE
February 2010

Software Projects That Failed Due to Poor Requirements Management

In a July 2005 IEEE article entitled “Why Software Fails – We Waste Billions Of Dollars Each Year on Entirely Preventable
Mistakes”, Robert Charette lists “Badly Defined System Requirements” as one of the primary causes of software project failure.
He estimates that software failures have cost the US economy as much as $75 billion dollars over the past five years.

In 1995, a Government Accounting Office report entitled “Radar Availability Requirements Not Being Met” document the
requirement failures of a project jointly developed by the U.S. Air Force, the Federal Aviation Administration and the National
Weather Service.

In 1994, the Standish Group released The Chaos Study which cited “Incomplete requirements” as the number one impairment
factor in failed projects. The number six factor is “Changing Requirements and Specifications”.

In the 1993 article entitled “Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems” by Robyn R. Lutz of
Jet Propulsion Laboratory, the root cause of 62% of the errors in safety-critical software was identified to be poor requirements.

In 1998, Robert Glass published the book, “Software Runaways: Lessons Learned from Massive Software Project Failures”. The
first reason cited reason for project failure is “Project Objectives Not Fully Specified.”

Changing scope affects all
other major performance
drivers

Downstream activities
could easily triple due to
“fan out” (aka expansion)

Validate changes against
your initial assumptions

Establish a method for estimation
For each project create a target for each
work product
Monitor each work product progress
Take action to control the process:

Reallocate resources
Modify the initial target
Rescope the plan / schedule

Capture actual performance for each work
product – review the estimation method

Requirements docs are generated throughout
the life-cycle. Know when to manage them.

Make sure you have visibility into what the
user has asked for = no surprises.

Keep track of how close the “actuals” match
the “plan”.

Requirements have a CM status, evidence that
more than one person has looked at it. Ensure that
all requirements move right

Maximize IQ Points
Ensure that the

engineer is not the
only one who
reviewed it.

Monitor and control churn (changes continually
made). It must reach “0” before you ship.

TBDs are often the most difficult and complex
requirements. Make sure the hard ones get
finished.

Managing requirements is not a difficult
technical issue
1. Create an estimate
2. Plan work products
3. Monitor progress
The techniques are simple and easy to
implement
So why do only a few companies do it?

If you don’t ship it, it must not be worth the
customer’s money
It’s not code
You never tried
Blah, blah, blah

Requirements Management Guidance on the Web

Software Engineering Institute www.sei.cmu.edu

Distributive Management www.distributive.com/resources

Crosstalk Magazine from STSC www.stsc.hill.af.mil/crosstalk

Scott Ambler’s Web Site www.ambysoft.com

Karl Weiger’s Web Site www.processimpact.com

Distributive Management

www.distributive.com
Peter Baxter
pbaxter@distributive.com
800.779.6306

	Putting “Management” Into Requirements Management
	Overview of Measurement
	Measurement Process
	Requirements Management
	Typical SPEC TREE
	Managing Requirements ENG.
	What Goes Wrong?
	Problem of Scope
	Management techniques
	Manage By …
	Understand the Work Plan
	Manage User Expectations
	Control Creep
	Monitor CRB/Change Status
	Control Volatility
	Manage the I-O-Us
	Summary
	Additional Resources
	Questions?
	COntact

