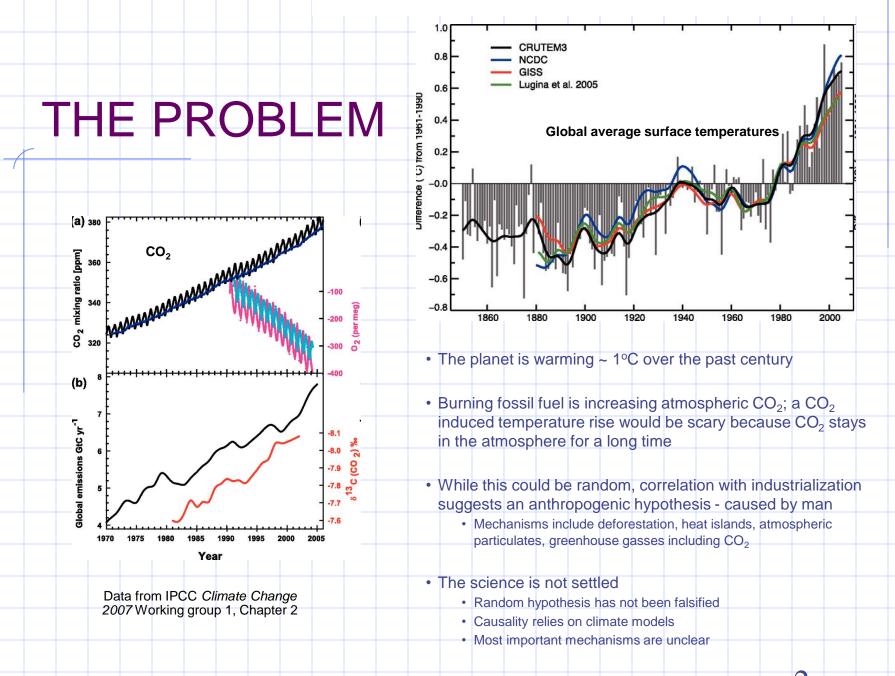
January 19, 2011


HOW TO DEVELOP CLEAN ENERGY SYSTEMS

Strategic systems development

<u>Strategic</u>: Decisions are based on the goal <u>Systems</u>: Cost & performance is determined by the whole system

© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

STRATEGIC GOAL

To reduce CO₂ emissions to 83% below 2005 levels by 2050 (President Obama 2009)

- Obama's goal is a good end state definition
 - Performance goal not a mandated solution
 - Judgment call based on science and risk

Purpose

- All decisions and interim goals are based on the strategic goal
- Do not deploy systems that obstruct that goal
- Judgment factors:
 - Big reductions, 20% is not enough
 - Next generation migration time frame minimizes costs
 - Emission reduction involves less risk than adaptation, geoengineering strategies
 - Reducing fossil fuel consumption is also justified on the basis of
 - Environmental impact
 - Finite resources, increasing cost
 - National security, health

© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

SYSTEMS DEVELOPMENT APPROACHES

Evolution

- No goal
- Decisions based on
 - Natural selection
 - Physical principle
- Nature
- Artificial life
- Self organizing systems

Agile development

- Fuzzy goal (consumer products)
- Decision based on market feedback
- Advantage
 - Immediate returns
 - Quick, easy way to manage complexity, rapidly changing environment, ill defined requirements

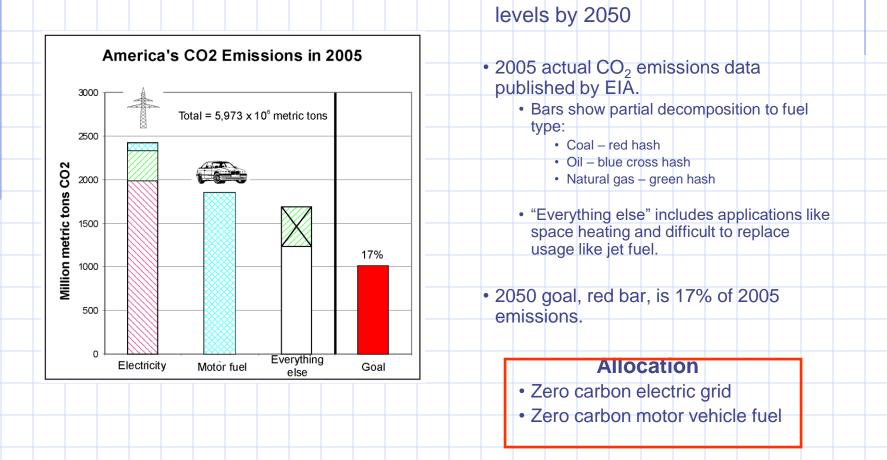
Disadvantage

- Inefficient, ugly, expensive systems (think Windows)
- Big mistakes, dead ends, extinction
- Never achieves a goal

Rational planning

- Clear end state (strategic goal)
 - Decisions are based on goal
 - Whole system focus, not components
- Advantage
 - Efficient, optimized systems
 - Structured client interaction simplifies the politics.
- Disadvantage
 - Planning takes discipline
 - An integrator needs to coordinate, enforce good process and best practices

EVOLUTION vs STRATEGY -EXAMPLE


- National Research Council published America's Energy Future (AEF) in 2009
 - Authored by members of the National Academy of Sciences and National Academy of Engineering
- The *AEF* was tasked to develop an evolutionary scenario based on "a projection of current economic, technology ... and policy parameters"
 - The AEF evolutionary scenario mixes legacy systems, changing technology and current policy resulting in confusion
 - No strategic goal
- The AEF conclusion:
 - There is no "silver bullet"
 - We need a "balanced portfolio," there are many ways to reduce CO₂ emission today, some enduring, some not
 - Nuclear is viewed as unattractive (because it is discouraged by current policy)
- A strategic analysis leads to a different conclusion
 - Very few feasible choices
 - Reveals some concepts to conflict with the goal

Torrow Construction

HIGH LEVEL ALLOCATION

6

Reduce emissions to 83% of 2005

STRATEGIC SCENARIOS

- Simple concept models of end state system configurations
 - Based on known technology
 - Ignore current policy and legacy system constraints (policy comes later)
 - Includes data based learning curves for performance/cost improvements.
- Analyze and compare system CO₂ and cost in sufficient depth to capture the structural essence
 - but no more.
- Strategic scenarios provide a clear definition of the technical feasibility of various choices.
- Strategic scenarios are followed by design reviews, then management decision milestones, then policy.

ZERO CO₂ SCENARIOS

- Electric power
 - Natural gas baseline
 - Nuclear
 - Smart grid
 - Wind
 - Coal
 - Solar PV
 - Concentrated solar thermal
 - Geothermal
 - Stationary fuel cells
 - Tides
 - Ocean thermal gradient
 - Storage
 - Hydro
- Motor vehicle fuels

/

NUCLEAR SCENARIOS

 \square

1 - Next generation site-built reactors

- With national commitment France took 40 years to build a grid that is 80% nuclear
- Technically feasible zero carbon primary power
- Direct cost is competitive
- Risk: migrating to 100% will require innovation

• 2 - Modular reactors

- Lower cost, factory built, truck transportable
- Many variations
- Smaller size lower risk, insurable
- Cost comparisons & constraints unclear

• 3 - Breeder reactors (long term scenario)

- Reprocessed fuel, less primary consumption, less waste
- Essentially sustainable, uranium from seawater
- Blue Ribbon Commission dealing with current issues
 - Institutional structure
 - Fuel cycle options
 - Transport and storage
 - Safety and proliferation

Coal = 6.2 ¢/kWhr N Gas = 6.5 Nuclear =6.6 Direct cost of new generation with same cost of capital (*The*

Future of Nuclear Power, MIT, 2009, p. 6

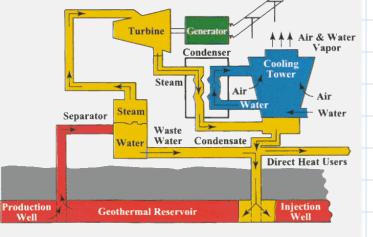
Babcock & Wilcox 125 mW module 6

8

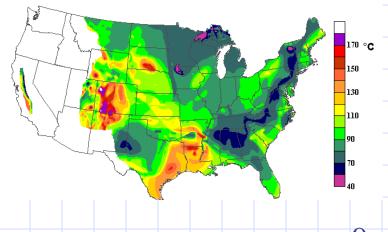
© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

GEOTHERMAL SCENARIO

Advantages


- Base load
- Zero carbon
- Secure
- Compact
- Distributed
- Cheap at high grade sites

Risk areas


- Geographic limits
 - Costs at lower grade sites
- Water
- Induced seismic

Potential

- 100 GW by 2050*
 - Hydro today 78 GW**
- * The Future of Geothermal Energy, MIT, 2006
- ** DOE/EIA nameplate

Estimated Earth's Temperature at 4km depth

© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

WIND SCENARIOS

Advocate's end state: 30% wind, 70% natural gas

- Not a strategic solution, cannot achieve zero carbon
- Risk: Discard wind to achieve zero carbon
- Risk: No system level emission validation
 - 5% wind penetration causes coal plants to cycle increasing SO₂ & NO_x emissions, real CO₂ emission reduction unclear.
- Risk: Obstructs commitment to strategic solutions

Niche - Wind/hydro dispatchable subsystems

- Denmark wind with Norway fjord pumped hydro works.
- Pacific Northwest
- Need system integration

Niche – Wind/geothermal dispatchable subsystems

Niche - Intermittent tolerant applications
 Water desalinization
 Hot water heating

Figure VI-6 Coal Plants Are Cycled as Wind Generation Increases (Nov. 5-12, 2008)

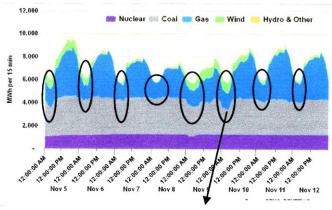
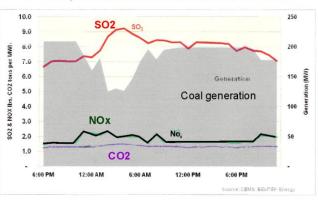
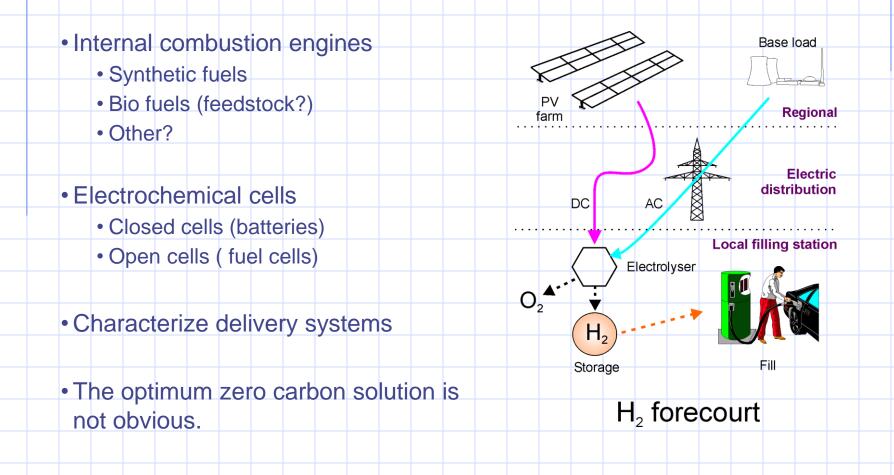
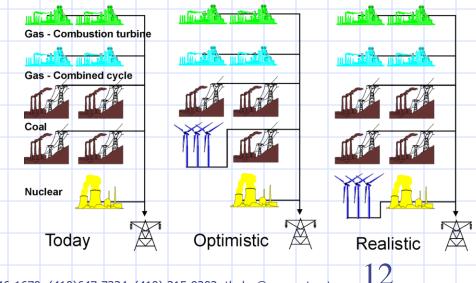




Figure VI-11 J.T. Deeley Generation & Emission Rates: Nov. 8-9. 2008

MOTOR VEHICLE FUEL SCENARIOS

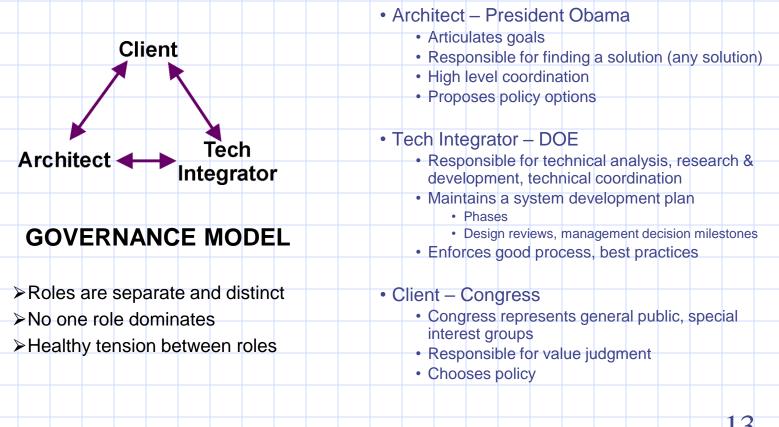


© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

DEVELOP THE WHOLE SYSTEM

Development should be driven by strategic system requirements

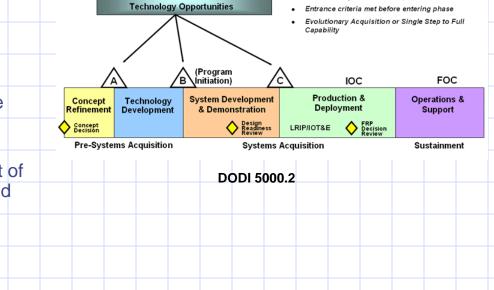
- · Clean components do not mean clean systems Wind
 - Every wind kWh must be backed up with 3-4 kWh from dispatchable fossil fuel generators
- Wind farms cause coal plants to cycle increasing emission of SO2 and NOx above no wind emissions (Bentek)
- System CO2 emissions are less than expected
- Power systems capability has atrophied since deregulation
 - · Fragmented management, no integrator, many agencies are responsible for pieces of the system
 - Basic tasks like balancing are a struggle
 - No empirical system studies
 - Wind integration teams focus on electromechanical integration ignoring emission and cost
- System cost Wind
 - Wind save fuel and competes with the wholesale cost of fuel
- Needs
 - System requirements
 - Integrated management structure
 - Empirical system analysis



© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

AN ARCHITECTURE PROBLEM

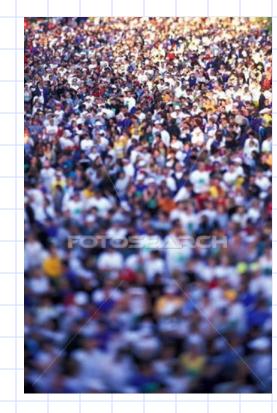
"We don't need a system integrator, the markets will do it."


nonsense

MANAGING TECHNOLOGY CHANGE

"Why bother planning when everything is going to change."

- Technology change is anticipated and managed as risk using phased development
- Engineering development plans consist of a sequence of phases separated by design reviews and management decision milestones
- Design reviews are a critical independent evaluation of fact
- Management decision milestones are value decisions
- Systems are decomposed into a nested set of many such plans with interrelationships and dependencies
- Systems integrator enforces discipline and provides development coordination


User Needs &

nonsense

Process entry at Milestone A, B, or C

SO MANY STAKEHOLDERS!

- One challenge is the number, diversity and innumeracy of stakeholders.
 - Energy affects everyone and everyone has an opinion.
- The interface between the customer and the contractor is always troublesome
 - Energy systems stakeholders are far more complex.
- Informed stakeholders simplify the politics. We need to experiment with novel open methods for engaging stakeholders in design reviews and management decisions.
 - Mechanisms to mitigate bias, push back against lobbyists and special interests
 - Large public works projects provides guidance.
 - Wilson bridge example

PUBLIC WORKS GUIDANCE

- Like energy systems, large public works projects involve consensus decision making by many diverse stakeholders
- The new Woodrow Wilson bridge (195 across the Potomac)
 - Engineers explored the full range of options: tunnels, high bridge, draw bridge (1 year), then
 - Value choice made through extensive interface with the public (local town hall meetings, briefings with local, state and federal politicians (3 years)

Woodrow Wilson Bridge

Lesson for clean energy systems

- The hard part is building a public consensus
- Consensus building is simplified by clear and simple choices
 - Separate technology from value choices
 - Strategic scenarios
 - Open design reviews

© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

OPEN DESIGN REVIEWS

Purpose

- Does the system satisfy requirements?
- · Clarify issues and problems to be resolved
- · Provides the factual basis for value choices

Format

- Public presentations to professionals
- Cross examination of experts by their peers

Agenda

- State requirements/goals
- · Compare the system with requirements
 - Establish a working group plus senior advisors
 - Consolidate scenario results into a written report
 - Public hearing (webinar) to find fact
 - Publish comparisons on the web seeking feedback
 - Upgrade analysis based on feedback.
- Document technical results (Minority/majority technical opinions)

Followed by client value choice (proceed, redirect, pause and re-evaluate, terminate)

© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

THE REALLY BIG MISTAKES

- An Eberhardt Richten maxim is that the really big mistakes are made on the first day
 - Can't reposition the house after the foundation is poured
- Big mistakes in energy
 - Corn based ethanol
 - Increases food prices
 - Generates more CO₂ than no mandate
 - Renewable portfolio standards
 - Dispatchable renewables are excellent
 - Intermittent renewables conflict with energy-on-demand systems
- It is too soon for a comprehensive energy bill
 - Clean energy can be stimulated by increasing the cost of carbon fuels or decreasing the cost of clean sources
 - We need a competent plan and a compelling vision

CONCLUSIONS

Strategic development

- The strategic goal drives decision-making
- Avoids dead end system concepts
- Very few feasible strategic solutions
- Systems not components
 - Performance metric is system emissions and cost
 - Intermittent generators (wind, solar) are incompatible with zero emissions and power-on-demand systems
- Where is the system integrator?
 - Coordinate development
 - Enforce good process and best practices
 - Keep technology and policy separate
 - Phased development, open design reviews
- Global leadership
 - Coordinate international development
 - Support for emerging economies
 - We do not yet have a strategic plan or a clear and compelling vision

Strategic vision

CHANGING TECHNOLOGY RISK

"Why bother planning when all the technology is going to change?"

nonsense

Internet lessons

- IT disruptions were market based entrepreneurial innovations, killer apps
 - Enabled by predictable, rapidly improving hardware
- Unlike IT, energy systems hardware technology and physical constraints are mature
 - Since 1890, the really big innovation was nuclear fusion as a heat source
 - No new alternate generation concepts since the 1970's
 - Batteries are likely to see 10% not 10x improvements
- · Search for novel systems concepts (integrated wind/hydro, ice air conditioners)
- Most technology change can be anticipated and managed as development risk
 - Examples: small modular nuclear reactors, hydrogen fuel cells
 - Major weapon systems have 40 year life cycle and 20 year development.
 - Engineers manage this risk with disciplined phased development

True technology disruptions (fusion, zero point energy) would change the plan

MANAGEMENT REVIEW

• Purpose:

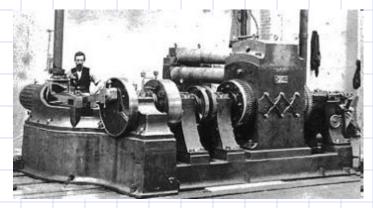
- Choose the best balance of cost, performance, schedule and risk.
- Develop policy recommendations.

Tasks

- Develop protocols and procedures after consultation with planning experts and public works communities of practice.
- Will likely consist of many presentations, Town Hall meetings and public hearings.

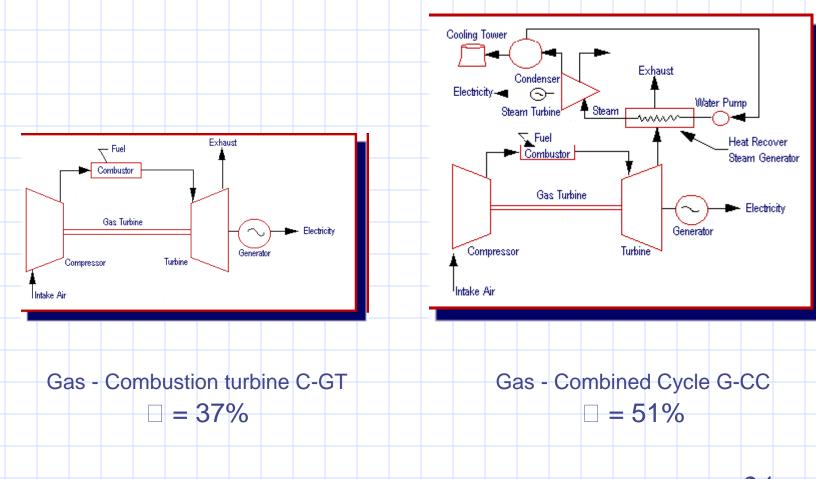
GLOBAL LEADERSHIP

- The big problem with global CO₂ emission is emerging economies.
- Need a global solution that is cheap, safe and secure.
 - What is the cost potential of Small and Modular nuclear power Reactors?

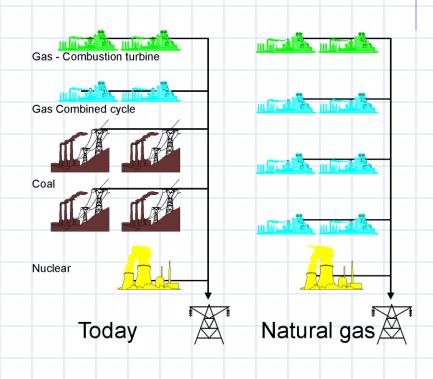


© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net

ELECTRIC POWER SYSTEMS HISTORY


- 1890-1970 Electrification build-out and reliability.
- 1970-today Cost reduction
 - through deregulation

Edison Pearl Street power station


- Divide system into competitive (generation) and monopolistic (transmission & distribution) functions.
- Consequence of deregulation is loss of systems engineering capability.
- California-Enron debacle, ISO vs wind advocates
- •2009 Clean (but also cheap and reliable)

NATURAL GAS TODAY

NATURAL GAS SCENARIO

- Interim solution
- Cost/performance of shifting all fossil generation to advanced gen natural gas
 - Combustion turbine
 = 37%
 - Combined cycle $\Box = 51\%$
- Useful reference for evaluating other scenarios

NUCLEAR POWER TODAY

Nuclear power is zero carbon & feasible

- During the past 40 years, the French built a power system that is 78% carbon free
- During the next 40 years the US can certainly do the same thing by just copying the French (though surely we could do better)

Direct cost is competitive

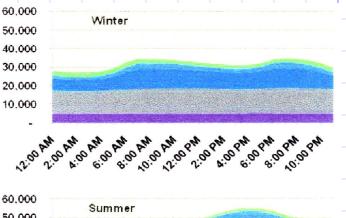
- Nuclear appears expensive because of high cost of capital
 - Policy could sweep away this barrier
- Small modular reactors offer promise

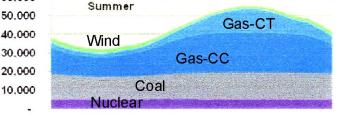
Presidents Blue Ribbon Panel on America's Nuclear

- Power Future new plan
- Review policies, recommendations
- Fuel cycles & reactor technologies
- Waste transport & storage
- Institutional options
- Trust

Coal = 6.2 ¢/kWhrN Gas = 6.5

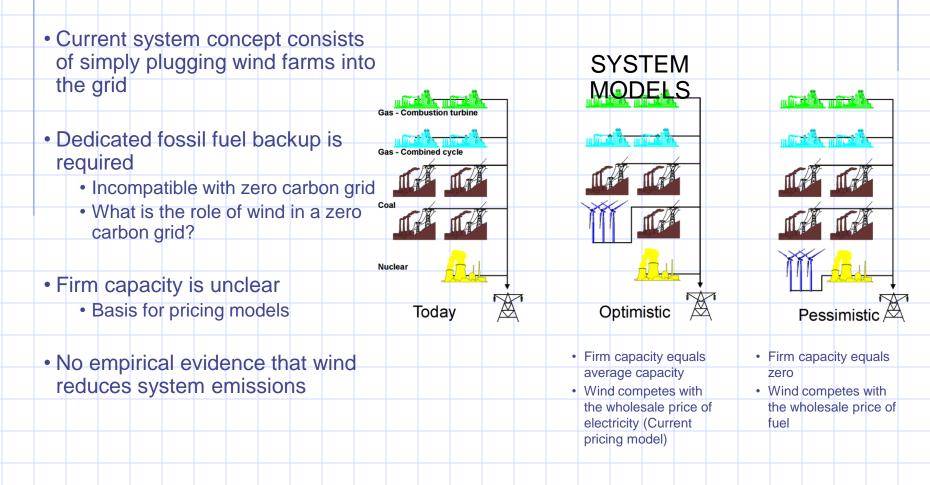
Nuclear = 6.6


Direct cost of new generation with same cost of capital¹


¹ The Future of Nuclear Power, MIT, 2009, p. $^{6}26$

SMART GRID SCENARIOS

- Apply information technology to the grid?
- What is the purpose?
 - Reliability
 - Fault recovery
 - Load leveling
- What is the system concept?



ERCOT 2009 Average hourly generation by fuel type and season (mW)

WIND POWER TODAY

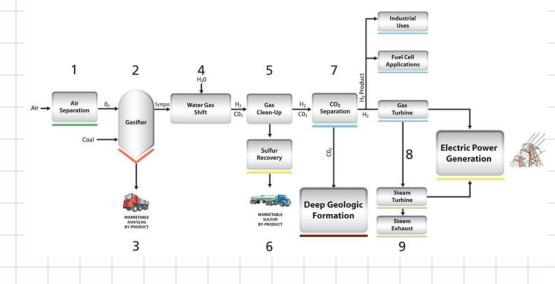
PV SCENARIOS

- Grid connect
 Emission limits
- Off the grid
- Integrated dispatchable subsystems
 - PV/hydro
- Intermittent tolerant applications
 - Storage
 - Hydrogen forecourt

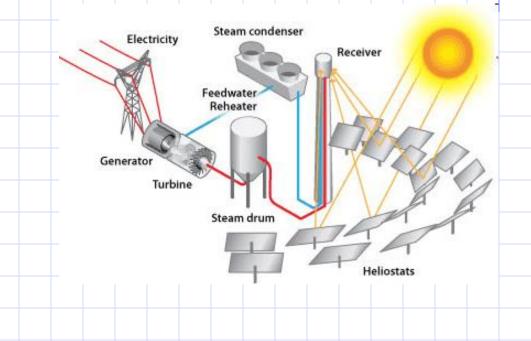
STORAGE SCENARIOS

- Purpose firm capacity
- Technologies
 - Flywheels
 - Capacitors
 - Superconducting magnets
 - Batteries
 - Pumped hydro
 - Compressed air
 - Thermal

Compressed air storage


Denholm, P., et al., *Role of Energy Storage with Renewable Electricity Generation*, NREL/TP-6A2-47187, January 2010, Available at: http://www.eia.doe.gov/oiaf/aeo/assumption/pdf/electricity.pdf#page=3

COAL SCENARIOS


- Integrated gassification with carbon sequestration
 - Future Gen
- Novel carbon capture techniques
 - What is the likelyhood of major innovations

Future Gen

FutureGen's Integrated Technologies

CONCENTRATING SOLAR SCENARIO

SUPPLY BASED GRID

© 2010, Dr. Alex Pavlak, 315 Dunham Ct., Severna Park, MD 21146-1670; (410)647-7334, (410) 315-9302; thales@comcast.net