

INCOSE SEP EXAM PREP BOOTCAMP

Learn the material in a comprehensive & contextual manner.

SE Scholar has developed a unique approach to teaching the INCOSE SE Handbook which contextualizes the various Organizational, Project and Technical processes that are necessary to realized a "System-of-Interest." With the aid of a comprehensive Process Flow diagram, Paul will walk the students from the Project Portfolio Process to Disposal Process in a logical and sequential manner, while covering the contents of the entire INCOSE SE Handbook. This course also has a significant on-line portion which provides study material and numerous quizzes as well as a sample exam. These tests are based on the structure of the INCOSE CSEP Exam, thus providing the student with a familiarity and comfort level they'll need to pass the Exam. These tests are a valuable resource for the student and can be repeated as many times as the student desires.

The INCOSE SEP Exam is used for both CSEP and ASEP applications. This course is one of the best in the industry because of its comprehensive and logical approach. In the end the student will:

- Learn the framework of the 31 Processes within the INCOSE SE Handbook vs. 4.
- Have access to dozens of practice Quizzes.
- Start to appreciate the context of Systems Engineering

Your on-line instructor will be Paul Martin, *ESEP*, who started **SE Scholar, LLC** several years ago to help other Systems Engineers go through the INCOSE SEP Certification process because he didn't have any help back in 2007 when he got his CSEP. He presently has an ESEP and is a practicing Systems Engineer with over 40 years of experience. He has been everything from a Product Engineer for General Electric Products Division to a Software Systems Engineer for a multi-million-dollar Navy program.

Paul has a unique and passionate style that keeps students interest at a high level. He's been teaching SEP Exam Preparation Courses since 2009 and has taught several hundred students.

JOIN THE CLASS TODAY AT https://se-scholar.eventbrite.com/

INCOSE SEP Exam Preparation Bootcamp: 5 Day Scope and Sequence

Systems Engineering by the Book (i.e. ISO/IEC/IEEE 15288:2015)

Modu	e	Lecture	Objective
0	Welcome		Introductions - expectations - objectives - logistics
1	The Context of Systems		Understand Systems and how Systems Engineering is used to create them.
	Engineering		Discover the various developmental approaches that can be used to construct a
	8		System of Interest.
	1.1 Introduction to Syst	Introduction to Systems	Identify what a system is and how systems engineering is used to create them.
		Engineering	Sections 1: SEHBK Scope; C: Terms and Definitions; 2: Systems Engineering
			Overview; 3: Life Cycle Stages, Characteristics
		Sustang Engineering	Explore the different developmental approaches to generate a system. Sections
	1.2 Systems En Approache	Approaches	3: Life Cycle Approaches; 9.2: MBSE; 9.1: M&S 9.5: Prototyping; 9.4: OOSE;
		Approaches	9.8: Lean SE and 9.9: Agile SE; 3.5: What Is Best
2	From Organization to Project		The processes that help ensure an organization's capability to realize a system
-	rom organization to rroject		through the initiation support and control of projects by providing resources and
			infrastructure.
			A Life Cycle Model is the framework where all processes are placed. Processes
	2.1	Managing Life Cycle Models	covered: 7.1 Life Cycle Model Management, 8.0 Tailoring; 7.3 Portfolio
			Management; 7.5 Quality Management
			The organizational processes that help in planning a project. Processes
	2.2	Organizational support of Project Planning	covered: 7.6 Knowledge Management; 7.2 Infrastructure Management; 7.4 Human
			Resource Management; 6.1 Acquisition; 6.2 Supply; 5.1 Project Planning; 9.7
			IDPTs
3	Project Management - From		It's important to understand the contribution of Systems Engineering to the
	SE	noint of view	management of the project.
			How the management and the control technical management
	21	Project Controlling Processos	action of the processes a project uses to control technical processes. Processes
	3.1	Project Controlling Processes	Covered. 5.2 Project Assessment and Control, 5.5 Decision Management, 5.4 Kisk
			Identify the processes a project uses to enable technical processes. Processes
	3.2	Technical Management - Enabling Processes	covered: 5.8 OA: 5.5 CM: 5.6 Information Management: 4.6 System Analysis: 4.1
			Business or Mission Analysis
1	Reg	uiromonts: From	Transform stakeholder user-oriented capabilities into a technical view of a
-	Stakeholder to System Design		solution that meets the operational needs of the user
	Stakeholder to System Design		
	4.1	Requirements: Functional to System Design	Develop a system and architecture design based on requirements. Processes
			covered: 4.2 Stakeholder Needs and Rqmts Definition; 9.3 FBSE; 10.14 Value
			Engr 4.3 System Rqmts Definition; 9.6 Interface Management; 4.4 Architecture
			Definition
			Utilize Specialty Engineering to aid in the design of the solution. Sections
	4.2	Design Considerations	covered: 10.1 Cost; 10.2 EMC; 10.3 Environmental; 10.4 Interoperability; 10.5
			Logistics; 10.6 Manufacturing; 10.7 Mass Properties; 10.8 RAM; 10.9 Resilience;
_			10.10 Safety; 10.11 Security; 10.12 Training; 10.13 HSI
5	recinical Processes - From		Create system elements that make up the solution, integrate them together, and
	Implementation to Disposal		ensuring the completed system fulfills its specified requirements, characteristics
			and mission. Deploy and sustain the system within its operational environment.
			When use is no longer required, dispose the system properly.
			Create and integrate system elements, verify system built right. Processes
	5.1	Design, Implement, Integrate,	covered: 4.5 Design Definition Process; 4.7 Implementation; 4.8 Integration: 4.9
		Verify	Verification
		Declar Velilet O	Deploy system. Validate it is the right system for the mission. Use and support
	5.2	Deploy, validate, Operate,	system. Dispose of it when no longer needed. Processes covered: 4.1 Transition;
		Support and Dispose	4.11 Validation; 4.12 Operation; 4.13 Maintenance; 4.14 Disposal
6	Practice Exam		Go to Class Portal and attempt the 120 Question Example Exam – 2 hour running
-			time.

Course References:

• Walden, David D., et. al.. Systems Engineering Handbook: a Guide for System Life Cycle Processes and Activities . Vol. 4.0. Hoboken, NJ: Wiley, 2015.