

What's Hot in SE for 2023?

Dr. Steve Biemer January 18, 2023

https://www.incose.org/docs/default-source/se-vision/incose-se-vision-2035-executive-summary.pdf

SYSTEMS ENGINEERING VISION 2035

ENGINEERING SOLUTIONS FOR A BETTER WORLD

INCOSE Vision35

Shameless Plug for INCOSE WGs

Transformational Enablers

INCOSE

Agile Systems & System Engineering Artificial Intelligence Systems Digital Engineering Information Exchange Lean Systems Engineering Model Based Concept Design NAFEMS-INCOSE Systems Modeling & Simulation WG **Object-Oriented SE Method** SE in Early Stage Research & Development **Small Business Systems Engineering** Soft Skills Systems Science **Tool Integration and Model Lifecycle Management** Systems Engineering Tools Database **MBSE Initiative** Smart Cities Systems Software Interface

MBSE Patterns

Application Domains

Automotive Critical Infrastructure Healthcare Oil and Gas Power & Energy Systems Telecommunication Transportation Infrastructure Systems of Systems Space Systems

Analytic Enablers

Complex Systems Decision Analysis Human Systems Integration Natural Systems Product Lines Resilient Systems Social Systems System of Systems System Safety Training

Systems Security Engineering

Process Enablers

Architecture Configuration Management Measurement Risk Management Systems Engineering Quality Management Systems Engineering and Lawmaking SE Law Integration Yammer Requirements PM-SE Integration

- What are Managers and Executives Talking About?
- What are Customers investing in?
- What are Practitioners doing?
- What are Researchers researching?

- What is it?
- How can I participate?
- Why is it so expensive?
 - Licenses
 - Training & Learning Curve
 - Translating
- What is the Return on Investment?

Traditional Systems Engineering

Model-Based Systems Engineering

Traditional Systems Engineering

Risk M Tra Stakeholder Needs	lanagement ceability evel Analyses ecisions Validation
Requirements +	→ Verification
Architecture	Integration & Test
Detailed Design 🔶	Unit Testing
Implementation	

Traditional Systems Engineering With a Model **Systems Engineering Risk Management** Traceability **Multi-Level Analyses** Stakeholder Needs Validation w P N Decisions x∎ A v 🖇 Requirements Verification Rational & Rhapsody Architecture **Integration & Test** Enterprise Architect Cameo EA GENSYS & CORE **Detailed Design** Innoslate **Unit Testing** Teamcenter Implementation

Implementation

- What is it? How is it implemented?
- How can I participate?
- Is it cheaper than traditional / MB systems engineering?

- "Agile" does not mean "process independent"
- When applied correctly, Agile SE can be effective in reducing the system development time
- When not applied correctly, Agile SE is an excuse to perform "Ad-Hoc" or unorganized SE
- Key Requirements for Agile SE: Transparency, Communication, and a Defined Process

#3. Artificial Intelligence & Machine Learning in SE

- What is it?
- How does AI/ML change traditional/MB systems engineering?
- Where is it applied, development or operations?

#3. Artificial Intelligence & Machine Learning in SE

What does it change?

- Complex systems to AI-based systems
 - Expert Systems
 - Machine Learning
- Many current architectures and designs are static
 - Functions are now dynamic
 - Interactions among systems & system components are dynamic
 - Ultimately, components evolve
- Example: DODAF is a static framework—it's hard to represent a system that is learning and evolving

William F. Lawless · Ranjeev Mittu · Donald A. Sofge · Thomas Shortell · Thomas A. McDermott *Editors*

Systems Engineering and Artificial Intelligence

#3. Artificial Intelligence & Machine Learning in SE

Enablers

- Internet of Things provides connections
- Cloud Data & Computing
- Interoperability progress is impressive, but has a ways to go

https://www.borntoengineer.com/9-engineering-trends-to-watch-in-2023 https://www.youtube.com/watch?v=Y-g69aEefGA

Managers & Executives are asking...

- What is it?
- What is its capacity? (are we at the Star Trek holodeck yet?)
- Where is it applied, development or operations?
- What is the Return on Investment?

https://www.borntoengineer.com/9-engineering-trends-to-watch-in-2023

What is Augmented Reality?

https://www.iotworldtoday.com/iiot/industrial-augmented-reality-promises-remote-support

What does it change?

- Blurs the lines between virtual and physical prototypes
 - Physical prototypes are available earlier in the life cycle
 - Important that AR includes performance & human intervention (not just visualization)
- Transition from design to manufacturing
 - Interoperability with manufacturing systems (& robots)
- Integration & Test
 - Integration plans can now be interactive, moving away from documents

- What is it?
- What's different from MBSE, and other areas?
- Where is it applied, development or operations?
- What is the Return on Investment?

What is Digital Engineering?

an integrated digital approach that uses authoritative sources of systems data and models as a continuum across disciplines to support lifecycle activities from concept through disposal. [1] DEPARTMENT OF DEFENSE DIGITAL O ENGINEERING O STRATEGY

> Office of the Deputy Assistant Secretary of Defense for Systems Engineering

[1] <u>https://sercuarc.org/wp-content/uploads/2020/06/SERC-SR-2020-003-DE-Metrics-Summary-Report-6-2020.pdf</u> https://man.fas.org/eprint/digeng-2018.pdf

What is Digital Engineering?

an integrated digital approach that uses authoritative sources of systems data and models as a continuum across disciplines to support lifecycle activities from concept through disposal. [1]

- **Digital Thread**: the use of digital tools and representations for design, evaluation, and life cycle management. [2]
- **Digital Twin:** a software simulation of the operation of a physical system. [3]
- **Digital Transformation:** *using digital solutions to improve the physical aspects of your business across engineering, manufacturing, and service.* [4]
- MBSE is a subset of digital engineering. [5]

[1] https://sercuarc.org/wp-content/uploads/2020/06/SERC-SR-2020-003-DE-Metrics-Summary-Report-6-2020.pdf

- [2] USAF Global Science and Technology Vision, Task Force. "Global Horizons Final Report". Homeland Security Digital Library.
- [3] https://insights.sei.cmu.edu/blog/what-digital-engineering-and-how-it-related-devsecops/
- [4] https://www.ptc.com/en/blogs/corporate/digital-transformation-strategy
- [5] <u>https://www.sebokwiki.org/wiki/Digital_Engineering</u>

Digital Engineering Ecosystem

PROGRAM MANAGERS GUIDE TO DIGITAL AND AGILE SYSTEMS ENGINEERING PROCESS TRANSFORMATION

Principal Investigator:

Thomas McDermott, Stevens Institute of Technology

Co-Principal Investigator: William Benjamin, Georgia Tech Research Institute

August 26, 2022 Updated: September 14, 2022

Sponsor: Office of the Under Secretary of Defense for Research & Engineering

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

> SYSTEMS ENGINEERING RESEARCH CENTER

The Networked National Resource to further systems research and its impact on issues of national and global significance

TASK ORDER NO. 0464

Final Technical Report SERC-2022-TR-009

https://sercproddata.s3.us-east-2.amazonaws.com/technical_reports/reports/1666113204.SERC_A013_WRT-1051_Final%20Technical%20Report_V3.pdf

INCOSE #6. Security (especially, Cybersecurity)

- Can't we just engineer in security?
- What's the risk?
- What is the Return on Investment?

#6. Security (especially, Cybersecurity) INCOSE

Leverage MBSE, AI, and ML

SYSTEMS SECURITY ENGINEERING

Applies scientific, mathematical,

engineering, and measurement

principles and concepts to direct,

of security engineering and other

Provides a fully integrated system-

Security

Specialty

coordinate, and orchestrate activities

contributing engineering specialties

level perspective of system security

Other

Specialty

systems engineering

- A specialty engineering discipline of

SECURITY AND OTHER SPECIALTIES

systems security engineering

systems security engineering

Integrates contributions through

Reflects the need and means to

oriented approach to engineering

Security

Specialty

achieve a transdisciplinary, SE-

trustworthy secure systems

- Performs and contributes to

activities and tasks

activities and tasks

Other

Specialty

NIST Special Publication NIST SP 800-160v1r1

Engineering Trustworthy Secure Systems

Ron Ross Mark Winstead

This publication is available free of charge from:

Michael McEvillev

https://doi.org/10.6028/NIST.SP.800-160v1r1

Source: Adapted from Bringing Systems Engineering and Security Together, INCOSE SSE Working Group, February 2014.

SYSTEMS

ENGINEERING

SYSTEMS SECURITY

ENGINEERING

Security

Specialty

https://csrc.nist.gov/publications/detail/sp/800-160/vol-1-rev-1/final

Related Topics

- System & Infrastructure Resiliency
- System Assurance

- What is it?
- What's different in engineering a SoS from engineering a system?

Challenges

- Almost everything is now referred to as a system-of-systems, so most engineers don't understand SoSE
- Current systems engineering methods, frameworks, and tools do not incorporate dynamic behavior

Keys Concepts

- Dynamic and emergent behavior (collectively)
- Independent constituent systems
- Dynamic constituent system relationships
- Information Flow & Decision Management

https://www.incose.org/docs/default-source/se-vision/incose-sevision-2035-executive-summary.pdf?sfvrsn=ff2063c7_8

- Big Data
 - Volume
 - Velocity
 - Variety
 - Variability (data flow)
 - Veracity (quality)
- Requirements Analysis

- 1. MBSE
- **2. Agile Systems Engineering**
- 3. Artificial Intelligence & Machine Learning
- 4. Augmented Reality
- **5. Digital Engineering**
- 6. Security
- 7. System of Systems Engineering

HM. Big Data HM. Requirements Analysis

