
1

Bridging the gap between the system and

software architectures using ISE&PPOOA

MBSE methodology

Webinar at INCOSE Chesapeake chapter

21 September 2022

José L. Fernández

jose.fernandez@incose.net

2

Content

1. What is a MBSE methodology?

2. Overview of main MBSE concepts as used by

ISE&PPOOA

3. The ISE&PPOOA conceptual model/ontology

4. ISE&PPOOA dimensions and views

5. ISE&PPOOA process

6. PPOOA software architecture framework and software

architecting process

7. The domain model. The bridge between the system

and the software architectures

8. To conclude

Speaker bio
Jose L. Fernandez has a PhD in Computer Science, and

an Engineering Degree in Aeronautical Engineering, both

by the Universidad Politécnica de Madrid (Spain).

He has over 30 years of experience in industry, involved in

projects dealing with software development and

maintenance of large systems, specifically real-time

systems for air traffic control, power plants, avionics and

cellular phone applications.

Author the MBSE methodology ISE&PPOOA, books,

journal papers and conferences papers.

He was associate professor at the Universidad Politécnica

de Madrid (UPM) until 2018.

INCOSE member, IEEE senior member and PMI member.

3

4

1.What is a MBSE methodology?

Process(es)+method(s)+tool(s)

5

What is a MBSE methodology?

(Estefan, 2008) characterizes a MBSE methodology
as the collection of related processes, methods,
and tools used to support the discipline of systems
engineering in a “model-based” or “model driven"
context
 Process: logical sequence of steps performed to achieve a

particular objective (What to be done)

 Method: is a technique, practice or procedure for
performing an step task (How to be done)

 Tool: is an instrument that, when applied to a particular
method, can enhance the efficiency of the task; provided it
is applied properly and by somebody with proper skills

6

2.Overview of main MBSE concepts

as used by ISE&PPOOA

The context of the ISE&PPOOA

process and framework

7

Overview of main MBSE concepts as used

by ISE&PPOOA

8

Main MBSE concepts as used by

ISE&PPOOA

 The ISE&PPOOA process uses the ISE&PPOOA framework

 The ISE&PPOOA framework contains the ISE&PPOOA
ontology (described later) and the set of views to represent the
system and provided as deliverables (described later)

 Engineering principles support methods or practices used to
support ISE&PPOOA process

 The ISE&PPOOA main process is described by its steps,
deliverables and participants

 Some MBSE tools supporting SysML diagrams may be tailored
to support ISE&PPOOA using a profile (optional)

9

Systems engineering principles

 As stated by the SEBoK, SE principles are a specialized and
contextualized instantiation of systems principles that address
the approach to the realization, use, and retirement of systems

 System principles guide the definition and application of SE
processes

 A principle transcends a particular lifecycle model or phase,
transcends system types, transcends a system context, informs a
world view on Systems Engineering, is not a “how to” statement,
is supported by literature or widely accepted by the community;
i.e. has proven successful in practice across multiple
organizations and multiple system types, and is focused,
concise, and clearly worded (SEBoK)

10

Principles driving ISE&PPOOA

 Breadth first development. The ISE&PPOOA
process recommends a breadth first approach in
which scope is covered comprehensively before
fidelity is addressed

 Form follows function. This principle states that the
shape of a building or object should primarily relate to
its intended function or purpose

 Modularity or modular design is a design principle
that subdivides a system into smaller parts called
modules which can be independently created,
modified, replaced, or exchanged with other modules
or between different systems. Modularity is based on
functional cohesion and minimum coupling

11

Scope and fidelity

 Scope is defined as the area within the boundaries of
the problem space. (Topper and Horner, 2013)

 Fidelity is defined as the level of detail incorporated into
the modeling or analysis activities associated with the
problem(Topper and Horner, 2013)

12

Tip: Scope in ISE&PPOOA

We recommend to model:

 All system inputs and outputs including matter, energy
and data (context diagram)

 Use cases or interactions between the system and
external entities (use cases diagram)

 All functions (functional hierarchy Block Definition
Diagrams, functional interfaces (N Square chart),
functional flows (activity diagrams)

 All quality attributes (Block Definition Diagrams)

 All subsystems and their interfaces (matter, energy and
data) (Internal Block Diagrams)

 System requirements (functional+nonfunctional)
(Requirements diagram or requirements tables)

13

3.The ISE&PPOOA conceptual

model/ontology

Understanding the concepts to be used

in the MBSE process

14

ISE&PPOOA conceptual model

15

Brief description of the ISE&PPOOA

conceptual model

 A system has parts that may be either simple or composite parts.

 A system interacts with the environment. These interactions are
described by an operational context that models the interactions as a
set of scenarios.

 Based on the operational context and scenarios, the engineer
translates the set of specific needs into a set of system capabilities
that should be solution-independent.

 Each capability is a container of system properties that may be either
system quality attributes, physical properties, states, or functions.

 In contrast to functional requirements that are allocated to system
parts, nonfunctional requirements implementation is essentially
different. Nonfunctional requirements may be met by the
application of design heuristics. For this reason a specific
association is depicted between the nonfunctional requirement concept
and the part concept as shown in previous slide

16

4. ISE&PPOOA dimensions and

views

How the model scope is organized

17

ISE&PPOOA dimensions

 The ISE&PPOOA views of the system can be

envisioned as the assembly of the three

dimensions used for software-intensive

systems design

 Each dimension has associated project

deliverables, mainly SysML diagrams but

complemented with textual and tabular

representations, for example the N square

chart

18

The three dimensions of ISE&PPOOA

19

Tip: The importance of hierarchies

Hierarchies are important to meet the breadth first approach in which scope

is covered comprehensively before fidelity is addressed

20

Functional architecture of the system

21

Physical architecture of the system

22

5. ISE&PPOOA process

Which are the methodological process

steps, deliverables and participants

23

The out-in approach is the foundation of the

ISE&PPOOA process

1. How the system operates in a context

2. Identify and specify the operational needs of the

diverse actors

3. Identify and model the system external interfaces

4. Identify and model the system functions

5. Specify system requirements

6. Identify and model subsystems and their interfaces

System

24

ISE&PPOOA process

25

Step 1. Identify operational scenarios

 Goal: Identify the operational context of the system and describe
its operational scenarios for the different modes of operation

 Deliverable: The system intended behaviors are described by
the operational scenarios, where additionally to the
preconditions, postconditions, and steps of each scenario, the
needs are identified. These needs are the inputs for the later
identification of the system capabilities and quality attributes in
the following steps of the subprocess

 Participants: Operational concept experts, requirements
engineers, future system users, and other project stakeholders

26

Step 2a. Specify system capabilities and high-

level functional requirements

 Goal: Transform scenarios and needs into a set of system
capabilities and high-level system requirements

 Deliverable: The deliverable is the representation of capabilities
with a hierarchical decomposition using the block definition
diagram of SysML. System functional requirements specified in
natural language but based on the hierarchical decomposition
are obtained. System measures of effectiveness (MoEs) can be
identified in this step

 Participants: Domain experts supported by systems engineers,
customers, and other project stakeholders

27

Step 2b. Specify quality attributes and system

nonfunctional requirements

 Goal: Transform scenarios and needs into a set of quality attributes for
example reliability, availability, security, and others including the
associated nonfunctional requirements

 Deliverable: In decomposing a nonfunctional requirement, the systems
engineer can chose to decompose its type (security, reliability, etc.)
based on a selected quality framework, or its topic, considering if it
applies to the whole system or one of its parts. It is possible and should
be taken into account that other nonfunctional requirements may be
affected either positively or negatively at the same time

 Participants: Systems engineers with the collaboration of customers
and experts in some quality domains for example security or safety

28

Step 3.1. Identify high-level functions

 Goal: Find the top-level functions of the system.
Top-level functions are those functions used to
organize the system functionality. They may be
identified by previous knowledge of systems with
similar capabilities or analyzing the main inputs and
outputs of the system to be developed

 Deliverable: The output is the top level of the
functional hierarchy using a SysML block definition
diagram

 Participants: Systems engineers with the
collaboration of customers and users

29

Step 3.2. Decompose functions into child

subfunctions

 Goal: Build the functional hierarchy identifying the
subfunctions of each high-level function of the
system and continuing until the granularity of the
subfunctions or children functions is appropriate for
the allocation step (step 4.1). Therefore, step3.2 is
part of an iterative process of building the functional
hierarchy

 Deliverable: The deliverable is the functional
hierarchy using a SysML block definition diagram

 Participants: Systems engineers with the
collaboration of customers and users

30

Step 3.3. Represent functional architecture

 Goal: Represent the functional architecture identifying
the functional hierarchy, functional interfaces and
functional flows or behavior

 Deliverable: The deliverable is the functional
architecture representing the functional hierarchy
using a SysML block definition diagram. N square
chart is used for functional interfaces description
where the main functional interfaces are represented.
Activity diagrams are used for representing the main
system functional flows of behavior. A textual
description of each system function is provided as well

 Participants: Systems engineers with the
collaboration of customers and users

31

Step 4.1. Allocate functions

 Goal: Identify the building elements of the solution
that implement each of the functions represented in
step 3.3

 Deliverable: The building elements or physical
components of the solution are identified. The
heuristics of modularity described in Chapter 6 are
applied here, choosing the solution elements so that
they are as independent as possible; that is, solution
elements with low external complexity (low coupling)
and high internal complexity (high functional
cohesion).

 Participants: Systems architects

32

Step 4.2. Represent modular architecture

 Goal: The selection of the solution is based mainly on the
clustering of functions to obtain a modular architecture

 Deliverable: The deliverable is the first version of the physical
architecture. The modular architecture is represented by the
system decomposition into subsystems and parts using a SysML
block definition diagram. This diagram is complemented with
SysML internal block diagrams representing the system physical
blocks with either logical or physical connectors for each
subsystem identified and activity and state diagrams for
behavioral description as needed. A textual description of the
system blocks is provided as well

 Participants: Systems architects

33

Step 4.3. Refine the architecture

 Goal: The modular architecture of the previous step is refined applying
trade-off and considering the implementation of nonfunctional or quality
attributes requirements. Design heuristics are used for taking into
account the system nonfunctional requirements

 Deliverable: Each used heuristic may be documented. The
project/company heuristics collection is an asset that will be updated
with the experience of the projects closed

Trade studies may be performed to select the preferred physical
architecture that optimizes the measures of effectiveness that may be
defined in step 2a

 Participants: Systems architects with the collaboration of customers
and experts in some quality domains; for example reliability,
maintainability, security or safety.

34

Tip: Refining the system architecture is

performed iteratively

Select a nonfunctional requirement to implement, select the heuristic to

implement this nonfunctional requirement, solve the conflicts with other

nonfunctional requirements and implement the heuristic modifying the

existing system architecture

35

6. PPOOA (Pipelines of Processes

in Object Oriented Architectures)

PPOOA a software architecture

framework and software architecting

process

36

PPOOA

 PPOOA is an architectural framework (“software architecting

process”+”building elements”) for real-time software intensive

systems.

 The main building elements of PPOOA framework are software

components and coordination mechanisms.

 The main software components are the “domain class” and the

“process” implementing an independent thread of control.

 Coordination mechanisms are the building elements supporting

synchronization and communication.

 A PPOOA “process component” may be implemented using an Ada task,

java thread or by the light processes supported by the real-time

operating system used.

Software components and coordination

mechanisms provided by the PPOOA

37

Controller :

Manages external

events

Domain component/

Algorithmic component:

Performs operations

Structure:

Maintains relations

between objects

Process:

Coordinates work

to others

Coordination

Mechanisms:

Synchronization+

communication

C
o

m
p

o
n

e
n

ts

PPOOA software architecting process

1. Create a domain model for the software subsystem

2. Identify software components

3.a Model the main threads

3.b Identify the coordination mechanisms

4. Represent and document the software architecture

¿Is it complete?

1. Create a domain model for the software subsystem

2. Identify software components

3.a Model the main threads

3.b Identify the coordination mechanisms

4. Represent and document the software architecture

¿Is it complete?

38

Step 1. Create the domain model

 Goal: The domain model is the bridge between the system and the

software dimensions

 Deliverable: A domain model is described using more formalism

than textual descriptions, for example UML class diagrams. The

domain model is the result of a domain analysis

Classes in the domain model represent concepts or terms derived

from use cases and the functionalities to be implemented by

software. Classes are abstractions of physical and non-physical

entities for example things, events, roles, descriptions.The

domain model represents the relations between classes mainly

generalization, specialization, “is part of”, “is member of” and

associations

 Participants: Systems engineers and software engineers

39

Step 2. Identify software components

 Goal: Create the initial set of components of the
software subsystem. A software component is a
computation entity that performs an assigned
responsibility, provides interfaces to other components,
and may require some interfaces from other components

 Deliverable: Set of selected software components.
PPOOA provides criteria and guidelines for the selection
of the software components most appropriate to
implement a class in the domain model

 Participants: Software engineers

40

Step 3. Model the main threads of execution

and identify coordination mechanisms

 Goal: Identify the execution thread and how they

coordinate

 Deliverable: Execution threads and coordination

mechanisms. The main execution threads are

determined by the periodic processes and the software

responses to events. PPOOA provides criteria and

guidelines for that and for the selection of coordination

mechanisms

 Participants: Software engineers

41

Step 4. Represent and document the

software architecture

 Goal: Describe the structural and behavioral views of the software
subsystem architecture

 Deliverable: The static structure of a system can reveal what it

contains and how its elements are related, but it does not explain

how these elements cooperate to provide the software subsystem

functionality. PPOOA uses an UML class diagram but adapted to its

component’s types and coordination mechanisms

To represent software behavior, PPOOA proposes to model it using

UML/SysML activity diagrams as used in the systems engineering

subprocess of ISE&PPOOA. Each event response is represented by

a causal flow of activities (CFA) modeled as an activity diagram. A

CFA is a cause-effect chain of activities that cuts across different

building elements of the software architecture

 Participants: Software engineers and systems engineers

42

7. The domain model

The bridge between the system and the

software architectures

Why software is different and how we deal

with software architecture?

 A mere physical system (traditional SE) and a software

system are different

 Software components can be created and destroyed

 Software does not meet Physics laws of mass, energy and

momentum conservation

 Software components are abstractions of physical and non-

physical entities for example events, roles, descriptions…

 For complex and software intensive systems we need

“best practices+methodology” that bridge the system

and software semantic gap. Here we have proposed:

ISE+ domain driven modeling + PPOOA

44

Domain model

 A domain model is described using more formalism than textual

descriptions, for example UML class diagrams.

 The domain model is the result of a domain analysis (Evans,

2003)

 Classes in the domain model represent concepts or terms

derived from use cases and the functionalities to be

implemented by software.

 So, classes are abstractions of physical and non-physical

entities for example things, events, roles, descriptions…

 The domain model represents the relations between classes

mainly generalization, specialization, “is part of”, “is member

of” and associations.

 A domain model is an essential input when the subsystem is

shaped in software architecture, design and implementation

45

Entities, Value objects and Aggregates in the

domain model (Evans, 2004)(Vernon, 2016)
 An entity is a domain model object defined primarily by its

identity

 Value objects are domain model objects without identity

that describe things

 An aggregate is a cluster of associated objects treated as

a unit when a data changes

 The root class of each aggregate owns all the other

classes clustered inside it

 Each aggregate is designed to be a change consistency

boundary so protect business invariants inside

aggregate. Aggregates should be as small as possible

46

CRC cards (Beck and Cunningham, 1989)

 CRC cards are index cards, one for each domain model

class, upon which the responsibilities of the class are

briefly documented and a list of classes collaborated with

to achieve those responsibilities

Class name

Software class identity

Class responsibilities

 What the class knows?

 What the class does?

Class collaboration

 Other classes the class is collaborating to achieve its responsibilities

47

Example

Collaborative robot developed by Carlos

Hernandez team at the Delft TU

Example: Collaborative Robot

Example system

49

Collaborative robot- Mission

dimension

Context, scenarios, needs and

capabilities
System

Mission

Software

50

Context diagram of the collaborative robot

51

Operational Scenarios

D
e
p

lo
y
m

e
n

t

S1 System configuration and

calibration

The operator installs the robot arm and the product containers in the frames, and moves the

robot arm to the reference pose for each container, so all end-effector poses are calibrated

off-line for the robot to be able to reach all the products.

S2 Configure new product

The operator adds a stack of a new product type, possibly of different dimensions (within a

limited variation range), or replaces an existing type with the new one, and informs the system

through the operator interface. The system is capable of processing order that include the

new product type.

O
p

e
ra

ti
o

n

S3 System start The operator powers up all subsystems. The robot arm calibrates its joints.

S4 Manage order
The system receives an order request consisting of several products of one or more product

types, and delivers the order in the bin by autonomously handling the products.

S5 Pick product
The robot moves the gripper to the container of the next product in the order, grasp an

available product, and retreats from the container holding it.

S6 Deliver product The robot delivers the product it is holding with the gripper in the delivery bin.

S7 Refill product
When one of the product stacks is empty, the robot notifies the operator and moves to a

configuration to allow the operator to replace the container with one filled with products.

S8 Shut down
The operator shutdowns the system through the user interface. As a result, the status of the

containers is stored in memory and the robot arm moves to the stand-by position

S9 Emergency stop
Upon an anomalous behavior, the emergency stop of the robot arm is activated, stopping any

current motion, and this is notified to the operator.

52

Collaborative robot- System dimension

Functional architecture, (requirements) and

physical architecture
System

Mission

Software

53

Collaborative robot functional hierarchy

54

N2 Chart of the Functional Interfaces for the

scenario “Pick Product”

• product • move to stack

• cell 3D model

• request pick • gripper ON INPUTS

OUTPUTS

F4 Manage

stacks of

products

• product index

F5 Move robot

safely • gripper over

product stack

Obtain grasp

trajectories

(F6.1)

• trajectory

Activate gripper

(F6.3.1.1)

• gripper suction

Execute motion

(F6.2)

• product picked

55

Collaborative robot main functional flows

Copyright 2022 José L. Fernández 56

F6 pick product functional flow

Copyright 2022 José L. Fernández 57

Physical architecture- SysML BDD

58

Physical architecture IBD with logical

connections

59

Physical architecture IBD with physical

connections

60

Collaborative robot- Software dimension

Domain model, software architecture

structural view, software architecture

behavioral view

System

Mission

Software

61

Domain model

F1 Handle Operator Interface X X

F2 Manage Order X

F3 Coordinate product operation X

F4 Manage stacks of products X

F5.1 Obtain collision-free trajectory X X

F5.3.1 Sense distance to robot arm X

F5.2 Execute and control interruptible trajectory X

F5.3.2 Detect obstacle X

F6.1 Obtain grasp trajectories X

F6.2 Execute uninterruptible trajectory X X

F6.3.1 Control grasp X X X

F7 Deliver product X

F8 Manage errors X X

F1 Handle Operator Interface X X

F2 Manage Order X

F3 Coordinate product operation X

F4 Manage stacks of products X

F5.1 Obtain collision-free trajectory X X

F5.3.1 Sense distance to robot arm X

F5.2 Execute and control interruptible trajectory X

F5.3.2 Detect obstacle X

F6.1 Obtain grasp trajectories X

F6.2 Execute uninterruptible trajectory X X

F6.3.1 Control grasp X X X

F7 Deliver product X

F8 Manage errors X X

F1 Handle Operator Interface X X

F2 Manage Order X

F3 Coordinate product operation X

F4 Manage stacks of products X

F5.1 Obtain collision-free trajectory X X

F5.3.1 Sense distance to robot arm X

F5.2 Execute and control interruptible

trajectory
X

F5.3.2 Detect obstacle X

F6.1 Obtain grasp trajectories X

F6.2 Execute uninterruptible trajectory X X

F6.3.1 Control grasp X X X

F7 Deliver product X

F8 Manage errors X X

1. Identify the functions to be allocated to software

2. the nouns in the functions description are candidates to

be domain model classes and the verbs are

candidates to be represented as associations

between domain model classes

1. Create a domain model for the software subsystem

2. Identify software components

3.a Model the main threads

3.b Identify the coordination mechanisms

4. Represent and document the software architecture

Is it complete?

62

Domain model

 Nouns are classes in the domain model.

 Verbs are relations between the classes.

 CRC cards are used to define the responsibilities

for each class of the domain model.
CRC card

Class name I_Robot_Skin

Responsibilities - Configure Skin

- F5.3.2 Detect Obstacle

- F1.2 Press resume operation

Collaborations - Coordinator

- Stacks manager

63

Structural view + CFAs for

behavioral view

Domain Model + CRC Cards

Software architecture is obtained from the

domain model and using PPOOA building

elements (UML-PPOOA profile)

 Architecture

refining process

by the use of

heuristics

Coordination mechanisms

<<Process>>

I_Operator_Interface
<<St ruc tu re>>

List_Order

<<Cont ro l le r>>

Coordinator

<<Process>>

I_Robot_Manipulator

<<St ruc tu re>>

Joint Trajectory

<<Domain Component>>

Obstacle

<<Process>> I_Robot_Skin

<<Domain Component>>

Stack_Status

<<Domain Component>>

Planner

<<Domain Component>>

Handle_Stack_Notifications

<<Domain Component>>

Obstacle_Detector

<<St ruc tu re>>

Trajectory_DB

< < A l g o r i t h m > >

Plan_Reparametrizer

<<Domain Component>>

I_Gripper

<<Domain Component>>

Order Manager

<<Domain Component>>

Stack_Filled_Signal

S3

B_Order_Request

S2

S4

1. Create a domain model for the software

subsystem

2. Identify software

components

3.a Model the main threads

3.b Identify the coordination

mechanisms

4. Represent and document the software

architecture

Is it complete?

64

 Heuristic - Safety: Avoid Non-deterministic Behavior
“Solution based on a database with trajectories obtained offline is used to

generate the motions to retrieve products.”

Software architecture structural view using

UML extended with PPOOA building

elements

Coordination mechanisms

<<Process>>

I_Operator_Interface
<<St ruc tu re>>

List_Order

<<Cont ro l le r>>

Coordinator

<<Process>>

I_Robot_Manipulator

<<St ruc tu re>>

Joint Trajectory

<<Domain Component>>

Obstacle

<<Process>> I_Robot_Skin

<<Domain Component>>

Stack_Status

<<Domain Component>>

Planner

<<Domain Component>>

Handle_Stack_Notifications

<<Domain Component>>

Obstacle_Detector

<<St ruc tu re>>

Trajectory_DB

< < A l g o r i t h m > >

Plan_Reparametrizer

<<Domain Component>>

I_Gripper

<<Domain Component>>

Order Manager

<<Domain Component>>

Stack_Filled_Signal

S3

B_Order_Request

S2

S4

65

Software architecture behavioral View- UML

activity diagrams with swimlanes
 Heuristic - Safety: Avoid Non-deterministic Behavior

“Interruptible regions only during motion execution in the shared

workspace”

66

To conclude

 ISE&PPOOA provides a method

to formalize and use system

required functionality to obtain

the system and software physical

architectures refined later using

heuristics to implement NFRs

 Domain model allows to bridge

the system and the software

architectures

 Domain modeling is performed

based on the functional

architecture
C

o
n

tr
o

l
R

o
b

o
t

R
o

b
o

tS
k
in

F1.3: order

request

F4.3: Obtain stack

indexes of available

products to complete

the order

F2.1: Get next

product stack index

F5.1: Obtain

collision-free ...

F5.2.2: Wait for 'no

obstacles'

F5.3: Sensed

obstacle

F5.2.1: Cancel current

trajectory

F5.2.3 Command and

monitor trajectory ...

F6.1: Obtain grasp

trajectories

F6.2.1 Command

motion

F5.3.1: Detect

obstacles

F5.2.4 Move robot F5.2.4 Move robot

F6.3.1.1: Activate

gripper

F5.3.2: Update 'no

obstacles'

F5.3.3: Sensed

obstacle

F6.3.2: Generate

suction grasp

skin timer

[islastproduct==true]

[else]

[obstaclesDetected==true]

[else]

Coordination mechanisms

<<Process>>

I_Operator_Interface
<<St ruc tu re>>

List_Order

<<Cont ro l le r>>

Coordinator

<<Process>>

I_Robot_Manipulator

<<St ruc tu re>>

Joint Trajectory

<<Domain Component>>

Obstacle

<<Process>> I_Robot_Skin

<<Domain Component>>

Stack_Status

<<Domain Component>>

Planner

<<Domain Component>>

Handle_Stack_Notifications

<<Domain Component>>

Obstacle_Detector

<<St ruc tu re>>

Trajectory_DB

< < A l g o r i t h m > >

Plan_Reparametrizer

<<Domain Component>>

I_Gripper

<<Domain Component>>

Order Manager

<<Domain Component>>

Stack_Filled_Signal

S3

B_Order_Request

S2

S4

67

ISE&PPOOA
Methodology book with

examples

Authors: José L. Fernández and

Carlos Hernández

Artech House, Norwood, MA. July

31,2019

ISBN-13:978-1-63081-579-0

OMG wiki with links to

resources:

https://www.omgwiki.org/MBSE/d

oku.php?id=mbse:ppooa

68

https://www.omgwiki.org/MBSE/doku.php?id=mbse:ppooa

Other references
 Estefan, J. A., Survey of Model-Based Systems Engineering (MBSE)

Methodologies, Rev. B, INCOSE Technical Publication, Document No.

INCOSE-TD-2007-003-01, San Diego, CA: June 10, 2008

 Topper, J.S. and C. Horner. Model-Based Systems Engineering in Support

of Complex Systems Development. Johns Hopkins APL Technical Digest,

Volume 32, Number 1, 2013

 Fernandez, J.L. and Martinez J.A. Applying Heuristics to Model the System

Physical Architecture, PPI SyEN issue 103, August 2021

 D´Souza, D.F. and A.C. Wills. Objects, Components and Frameworks with

UML. The Catalysis Approach. Addison Wesley, Reading MA 1998

 Fernandez J.L. and A. Monzon, Extending UML for Real-Time Component

Based Architectures. 14th International Conference Software & Systems

Engineering and their Applications, Paris, France, December 2001

 Evans, E. Domain-Driven Design: Tackling Complexity in the Heart of

Software. Addison Wesley 2004

 Vernon , V. Domain-Driven Design Distilled. Addison Wesley 2016.

 Beck, K. and A. Cunningham. A Laboratory for Teaching Object-Oriented

Thinking. Proceedings of the OOPSLA’89, pp.1-6

69

Questions

70

