
© 2010 Distributive Management www.distributive.com

DISTRIBUTIVE MANAGEMENT

PUTTING “MANAGEMENT” INTO YOUR 

REQUIREMENTS  MANAGEMENT
PETER BAXTER

DISTRIBUTIVE MANAGEMENT

INTRODUCTION

While requirements engineering and requirements tools have become widely adopted, the number of 

software project failures attributed to poor requirements management remains high. Metrics [1] that focus 

on requirements engineering are widely available, yet often only the most advanced and mature 

organizations actually use them. Requirements metrics are key indicators of project scope, growth, 

stability and progress.  Managers who use requirements engineering measures can spot trouble before a 

software project becomes a death march. By better managing requirements engineering, managers 

ensure that they deliver a quality product that completely satisfies customer expectations. 

The most common requirements engineering challenges faced by typical organizations attempting to 

manage the software development process are:

• Most requirements engineering tools don’t provide a way to establish the number of requirements to 

be developed, the baseline;

• Managers generally have no method for assessing requirements engineering progress against the 

baseline; 

• Requirements engineering processes don’t quantify the extent and impact of requirement changes on 

a product; 

• Managers have no means to monitor and control the flow of requirements from development to 

design to coding and test; 

Each of the challenges above is directly addressed when measurement is included as part of 

requirements management activities. Requirements measures provide project managers with the data 

needed to actively manage their projects. There are three key benefits that requirement measures 

provide. First, project managers initiate requirements measurement by establishing a plan or baseline, 

against which actual progress can be assessed. Second, with appropriate measurement data collection 

from a requirement repository, the project manager can review actual versus plan as well as other 

progress and quality indicators.  Third, armed with up-to-date progress data, the project manager can 

take action before problems have a significant impact on the schedule or product, or both.

Requirements measures help managers prevent software project failures. This technique of using metrics 

is not new – what is a fresh step in the right direction is managers’ expectations that they are more closely 

involved in monitoring and controlling the requirements process. 

Mr. Baxter is actively involved in improving management and oversight through the use of performance 

measurement processes, techniques and best practices.  Mr. Baxter is actively involved the leading 

organizations, including International Council on Systems Engineering (INCOSE), Practical Software 

and Systems Measurement (PSM), International Organization of Standards (ISO) Subcommittee, IEEE 

and others. At Distributive Management, Mr. Baxter directs solution delivery and has the privilege of 

working with the most mature and advanced companies in the world to improve and tune their 

management processes. 

- 1 -



© 2010 Distributive Management www.distributive.com

Software Projects That Failed Due to Poor Requirements Management

In a July 2005 IEEE article entitled “Why Software Fails – We Waste Billions Of Dollars Each Year on 

Entirely Preventable Mistakes”, Robert Charette lists “Badly Defined System Requirements” as one of the 

primary causes of software project failure. He estimates that software failures have cost the US economy as 

much as $75 billion dollars over the past five years.

In 1995, a Government Accounting Office report entitled “Radar Availability Requirements Not Being Met” 

document the requirement failures of a project jointly developed by the U.S. Air Force, the Federal Aviation 

Administration and the National Weather Service.

In 1994, the Standish Group released The Chaos Study which cited “Incomplete requirements” as the 

number one impairment factor in failed projects. The number six factor is “Changing Requirements and 

Specifications”.

In the 1993 article entitled “Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems” 

by Robyn R. Lutz of Jet Propulsion Laboratory, the root cause of 62% of the errors in safety-critical software 

was identified to be poor requirements.

In 1998, Robert Glass published the book, “Software Runaways: Lessons Learned from Massive Software 

Project Failures”. The first reason cited reason for project failure is “Project Objectives Not Fully Specified.” 

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT

WHAT HAPPENS WHEN REQUIREMENTS ARE NOT MANAGED

Study after study has identified poor requirements management as a key factor in project failures. 

There are countless studies spanning the last 35 years that cite poor requirements management as a 

primary or contributing factor in the failure and even cancellation of software development projects.  The 

table above summarizes some of the more notable ones.

The inability to manage requirements leads to projects which do not deliver the functionality that end-users 

or customers expect or need. Frankly, after decades of failure and with the tools to actually manage 

requirements, we should have learned by now.

A TYPICAL REQUIREMENTS PROCESS

A requirements process first describes the purpose of a software product, and then refines that purpose into 

greater detail.  Commonly, requirements are set out in one or more requirements documents, generically 

called work products. While there are special languages designed to express requirements, the natural, 

English language is still the most prevalent. Diagrams, such as the use case diagram, are becoming 

increasingly popular as a means to more efficiently convey requirements. 

For small and medium-sized projects, typical requirement engineering activities define the high-level need 

for the system, refine the need into specific features and functions, and build lower level requirements for 

major components or functional areas.  Requirements are also refined into software design requirements. 

Finally, test plans (which are requirements documents for testing) ensure that the requirements captured in 

the initial high-level requirements documents are satisfied. 

- 2 -



© 2010 Distributive Management www.distributive.com

Figure 1 – typical flow of requirements through the 

software development lifecycle. 

Figure 1 depicts the typical flow of requirements 

through the software development lifecycle. 

There’s a glaring omission from Figure 1 that 

should worry the astute reader – there is no 

apparent concern for managing the process!

In almost all requirements process diagrams the 

author has ever seen, the “management” of 

requirements management is missing and only 

the technical part is shown.  

Figure 2 below shows the management part of 

requirements management within the context of 

actually performing the technical activities. 

You can see that the manager will set a baseline 

and then monitor progress against this baseline.  

The software manager will use that information 

during the fact to change execution and ensure a 

successful completion.

Most modern requirements engineering tools provide an interface for extracting the progress data needed 

to manage.  Once the data is extracted, it can be analyzed and compared against the baseline to create a 

status indicator, such as a green light or a yellow alarm.  Because decisions are generally made using 

whatever information is readily accessible, requirements status is, ideally, delivered automatically to a 

stakeholder’s desktop so they don’t have to go dig it up themselves. 

Figure 2 – revised requirements management incorporates real management.

- 3 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

PRACTICAL REASONS TO MEASURE REQUIREMENTS

If you are still not convinced that managing requirements is essential for successful project completion, look 

through the reasons discussed in this section. When combined with the catastrophic failures presented 

earlier, these reasons demonstrate that requirements management is critical and essential – no project 

manager should start a project without requirements measures. 

You Must Control the Requirements Creep

Requirements creep is a term for the adding of requirements after the project has been started, without 

proper consideration of the additional resources, time or risks those new requirements represent.  In short, 

requirements “creep” into the software. Typically, project plans are based on an estimated number of 

software requirements.  Once the functionality is estimated using those requirements, further estimates can 

be developed for staff, schedule, quality and other aspects of project execution.  Because estimating 

requirements plays such a large part in developing the initial program plan, it is imperative to monitor that 

requirements are proceeding as expected.

Consider a simple scenario where you are developing 25% more requirements than you planned for – every 

life-cycle activity is likely to be over schedule and budget by at least 25%. One top-level requirement, when 

decomposed, expands to multiple requirements at the detail level. For example, one top-level requirement 

might decompose into five testing requirements. (This is called “requirements expansion” or sometimes “fan 

out”.)  So, if high-level requirements change by 25%, the project schedule and staff might be impacted by 5 

times that amount or more!

It is advisable to monitor the requirements creep in each requirement work product. At a minimum, though, 

you should measure the system or top-level software requirements. When possible, you should also track 

the decomposition of system requirements into more detailed requirements. 

Customer Satisfaction Depends On Requirements Delivery

All end-users, even those users of in-house software, will, justifiably, revolt if they are given software that 

does not perform to their expectations. The software team captures what the customer requires in a 

requirements document called the User Requirements Document (URD), and then monitors the 

development effort to ensure that all required functionality is present (and operational) in the software 

product.  If the project manager does not know, absolutely and un-equivocally, that all user needs have been 

met before the product is shipped, the end-user is likely to be dissatisfied. 

The challenge of customer satisfaction is difficult, even in the best of circumstances.  Typically, there’s a 

team of software developers, not experts in the domain of the end-user, who must interpret and translate 

user needs into a real software product. This in itself, is a challenging proposition. Being absolutely sure, 

through objective requirements measurement and management, that that the end-user requirements (as 

expressed in the URD) are complete is essential to end-user satisfaction. 

While some end users can only complain (to their internal IT department for example), other end users can 

stop buying (or funding) a product and drive a company out of business if customer satisfaction becomes 

unacceptable. 

- 4 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

Requirements Drive Effort and Schedule

The scope of your project is determined by the number 

of requirements to be developed. As you add 

requirements, you increase the amount of work 

required to complete the software product. Each added 

requirement means additional work to analyze and 

describe the requirement. Then, the added requirement 

must be refined into software design and code. Finally, 

the added requirement must be tested and 

documented. Throughout the process, quality 

assurance must ensure that the resulting product 

maintains the desired software quality goals. 

The Leading Software Framework (the CMMISM) Requires It

Even if your organization hasn’t chosen to specifically implement the SEI’s Capability Maturity Model 

Integrated, it (the CMMI) is still an invaluable “playbook” that can help you improve areas of systems and 

software development. In the CMMI, there are maturity levels, 1 through 5 and requirement management 

appears early in the CMMI approach. Measurement has its own management process area and also plays 

a key role in the CMMI.  One of the first things the CMMI focuses on is requirements engineering and 

requirements management.

The CMMI provides guidance for how to setup good and effective requirements management processes, 

including process planning, process activities, work products, characteristics of the work products, quality 

attributes, and associated measures.  Even if you don’t go through a formal assessment, the SEI web site 

(www.sei.cmu.edu) and the CMMI are valuable resources for improving software development processes. 

The more requirements you add, the more your project will cost (to pay salaries) and the more time it will 

take (to implement the change).  Additionally, you must address the quality of affected work products, 

such as URD, software design, software code, unit test and system testing.  The relationship between 

scope, cost, time and quality is shown in figure 3 (from “Your Mission, Should You Choose to Accept It: 

Project Management Excellence” by David L. Hamil (PMP) of MESA Solutions, Inc.)

GUIDANCE TO START MEASURING REQUIREMENTS

This section provides steps you can follow to start implementing requirements management in your 

organization. 

Identify What You Need to Know

In order to control software development, managers need timely status information for decision-making. 

The information that managers receive should help them understand progress and prevent known or 

common issues from affecting the project. Unfortunately, instead of receiving useful information, 

managers generally receive just the information that the IT staff can get easily. 

Figure 3 – changing requirements 

affect all aspects of the project. 

-5 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT

http://www.sei.cmu.edu/


© 2010 Distributive Management www.distributive.com

Identifying the correct information needs is essential for being able to monitor and control a software project.  

Relevant information needs answer questions or address risks that are relevant to the project manager.

• Information Needs for Current Management Practices

• Measurements of "Requirements" 

• Risks That Impacted Previous Programs 

• Risks for the Current Program

• Measure What You Are Trying To Improve

• Software Quality 

• Assumptions Used in Preparing the Project Plan

• Information Needed to Satisfy Organizational Policy 

• Resources Consumed and Products Produced To 

Understand Process Performance

Refer to figure 4 for the key 

places to look when identifying 

your information needs.

This paper provides the best 

practices for measuring 

requirements, but there are other 

areas that you may want to 

measure. Instead of measuring 

what is easy or been done in the 

past, you should first examine 

what your most essential 

management needs are, and 

then, like requirements, refine 

them into actionable measures 

and indicators. 

Establish a Requirements Plan or Baseline

Before committing all your resources and marching off towards a successful project, ask yourself “How 

much software functionality does our team have to develop?” In order to answer that question, you will need 

a plan, or baseline, of the number of requirements to be developed for the project. Ideally, you will create a 

baseline for every work product, but at a minimum you should create a baseline for the URD, and the 

system test plan.

The initial baseline is simply a monthly estimate of how many requirements you will have completed each 

month of your software project. This estimate is usually cumulative so that you can easily see the percent to 

be completed, the number and percent actually completed, and the relative time frame for completing them. 

During the project timeframe, the measurement process should deliver periodic updates of the progress 

against the requirements baseline. 

Figure 4 – Primary Sources of Information Needs
September 2002 Software Technology Support Center’s Crosstalk.

Monitor Actual Versus Plan

As your software project proceeds, you must periodically extract requirements metrics from the applicable 

work products and generate the current “actual” status.  The actual should be compared to the plan such 

that it is easy to see the difference between them.  

Figure 5 on the following page shows the plan and actual number of requirements for the User 

Requirements Document along with a color-coded indicator (above the plot), making assessment straight 

forward and not subject to the scale/magnitude of the number of requirements. 

- 6 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

Figure 5 – number of requirements., planned and actual.

In the figure 5 above, notice that requirements growth is expected (as indicated by the plan line) to slow 

near the end of the project. By comparing the actual to the plan, we can easily see the difference.  Also, 

notice that above the graph there’s a color-coded indicator which displays red, yellow or green, depending 

on how significant the gap is between actual and plan. 

Today’s requirements management tools provide unsurpassed functionality and usability for the process 

of defining, analyzing and allocating requirements.  They do not, however, provide a method for 

establishing a baseline plan, and then comparing plan to actual as the project proceeds.  This is one 

reason for including measurement as part of requirements management – to capture the plan/baseline 

and then compare the actual data as it is collected.

Manage By Exception

Finding time is a constant challenge for the software project manager –time to review and approve work 

products, reviewing metrics/technical status, attend meetings, prepare team materials…there never seems 

to be enough. Modern measurement tools provide a method, called manage by exception, that can save 

valuable time when reviewing project status. 

In a typical software company, you may have fifty (50) projects, each with 5 requirements documents, 

thousands of lines of code, and hundreds of staff.  Reviewing each item manually and checking actual 

performance against the plan would be monotonous, error-prone and time consuming.  Compared to the 

“eyeball management” approach, imagine if you could assign a business rule and color to each comparison, 

and then simply watch the colors for problems.  Figure 6 on the following page depicts a set of requirements 

and project indicators, grouped into management categories. 

- 7-

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

Figure 6 – requirements and project indicators grouped by management category.

Using management by exception, you are presented with color-coded status, evaluated from current data, 

for the high-level measurement areas (e.g. quality and risk).  To review your projects, for example, you 

would instantly spot red or yellow status, then explore just those project areas. 

Take Action

The primary goal of a project manager is to monitor and control their project to a successful completion.  

To “control” a project, the  management must take action, i.e. change the current project execution to 

yield a more desirable result.  While progress indicators act as “triggers” for a project manager, the 

project manager will need to review the current data and then take appropriate action.

To take action a project manager will need to 

get as complete a picture as possible of the 

current “state” of their project.  Indicators and 

measures are inter-related, with some 

indicators being leading ones and some being 

trailing. For example, a requirements indicator 

may turn red because no progress was made 

in software development (but only after the 

software development failed to meet its 

targets!) 

A sample set of information products for a 

software project is shown in figure 7. Notice 

that along with requirements, the project 

manager can review coding, cost, defects 

issues and other measures – in essence a 

complete picture of their project. 
Figure 7 – information products for a 

software project. 

- 8 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

Inform Stakeholders

Everyone hates surprises in software development.  Stakeholders, including the ones who fund or are 

ultimately responsible project success, especially dislike surprises.  Scott Ambler (Software Development 

Magazine, September 2005) says this about stakeholders:

Project stakeholders include anyone affected by the development or 

deployment of your system. This group incorporates direct or indirect 

users, managers of users, senior managers, operations staff, support 

(help desk) staff, developers working on other systems that interface 

with yours, and anyone else responsible for maintaining the system. To 

succeed, you must understand and then synthesize all of these people's 

requirements into a cohesive vision.

You should take steps to keep stakeholders informed throughout the life of your project. In large projects, 

the list of stakeholders could include systems engineering managers, software managers, quality 

assurance groups, configuration management, customer representatives, program office members and 

others. Each type of stakeholders may require different a different set of reports, including status of 

requirements engineering activities. 

RECOMMENDED REQUIREMENTS MANAGEMENT VISUALS

This section describes what requirements management might actually look like.  One thing you should 

notice is that the basic graphing and display techniques are well-known – what is unique is that they are 

focused on the challenges of managing requirements.  This section shows ways to show requirements 

status at a high-level, allowing you to manage by exception and spot trouble areas quickly.  Then, key 

requirements monitoring information is shown through a set of sample graphs and indicators. 

These visuals will help you ask for changes and improvements in your existing reports.  In many cases, 

you may already have requirements reports or graphs which can be expanded to provide the visual 

techniques shown in this section.  The samples were created with Distributive Management’s DataDrill.  

See Section 7 for resources and tool for requirements engineering and management.

The Big Requirements Picture

As the size and complexity of your software product increases, the number of things to manage and 

control also increases.  To stay ahead of potential problems, the software manager should have a concise 

and up-to-date big picture view of requirements engineering. This big picture view should provide a 

summary of the requirements management visuals suggested in subsections, 6.2 through 6.8. 

A sample high-level requirement big picture is shown in figure 8 on the following page. 

- 9 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

The summary view shows each high-level requirements status as appropriate for the current project 

timeline. Easy-to-read gauges and color-coded indicators keep the team apprised of overall requirements 

progress and changes, and keeps an eye on how schedule is being affected.  

Figure 8 – high-level requirements status

Ideally, you would be able drill into more detailed information about its status, as shown here in figure 9.

The requirements visuals should be tailored to support the indicators, graphs and status information that 

your project managers need. 

Figure 9 – detailed requirements status

- 10 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

Customer Input

One area where software projects often fall short is in the area of customer requirements – managing 

them initially and controlling changes to them.  As a project progresses, customer requirements typically 

expand.  This happens because of two constants in software development: 1) as we develop something, 

we learn more about it and are able to better articulate what we want;  2) over the course of time required 

to develop something, technology changes. Other reasons include a change of need by the end-user or 

an expansion of the level of automation needed.  Whatever the reason, it is not always possible for a 

software project manager to say “no” to additional requirements. There are three aspects of measurement 

that can greatly help you manage the effects of customer input. 

First, by working with the customer and explaining to them that your schedule and resources are based 

on agreed-upon requirements, they will be aware that requirements changes are not free. (A common 

developer maxim is: good, fast or cheap, pick ay two.) Establish a period where you encourage customer 

feedback and collaboration on the high-level requirements. Once this is complete, you are then in a 

position to create, or in some cases refine (when you had to produce a schedule before knowing what the 

requirements are) the project plan, including schedule and resources. 

Second, make sure you measure the progress of requirements through the lifecycle, so that you can 

show your customer the affect on schedule, cost, resources, quality, etc. of changing a requirement.  

Many times, a customer may not understand or appreciate the amount of work that has been performed 

and is therefore not concerned about changing a requirement.  By having the hard data to discuss, you 

can turn the focus away from “we really need this” and to “how are we going to do this”, where it belongs. 

Figure 10 – User Requirements Actual Progress

- 1 1-

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

Third, once you agree to a customer change, you need to re-visit your plan and see if you need to assign 

more resources or change the schedule. The performance data collected to date will prove useful in 

quantifying the areas of impact. 

In the figure 11, notice that the percent of plan is actually 101% at the end of our project, meaning we 

ended up with more requirements than we initially planned. In this case, we planned for 120 and actually 

had 121, which indicates a well-planned project. By monitoring this difference as the project proceeds, 

you have two primary options for dealing with a percent of plan over 100 percent. First, you can stop 

requirements creep by deciding not to develop the new requirements. Second, you may decide to include 

new requirements provided that you also assess whether to re-plan the project.

You should monitor requirements growth on a periodic basis, perhaps weekly or monthly.  First, you want 

to make sure that requirements are actually growing, that is, the total number stays the same or increases 

each period.  You want to make sure that growth is keeping reasonably close to your baseline. When 

growth lags, this represents under-performance by your team and is a cause for review. 

Requirements Growth

Requirements growth is the number of requirements contained in each requirements document, and is 

typically counted on a weekly or monthly basis.  If requirements was used as an estimation factor (as 

opposed to function points/functional size measures), then requirements growth would also include the 

requirements baseline.  Requirements growth (the actual number of total requirements) and the 

requirements baseline (the planned number of requirements) are displayed, along with a calculation of the 

difference in percent between growth and baseline.  

Figure 11 – Requirements Growth

- 12 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

You should also monitor requirements growth closely to make sure that new requirements are not 

included without review (i.e. “creep”). An easy condition to check for is that the requirements growth 

exceeds the baseline. You should monitor underperformance (growth less than baseline) to determine 

whether you have enough staff, or enough skilled staff working on the project. You should monitor over-

performance (growth exceeds baseline) to see if you have unapproved requirements, or if staff are not 

developing sufficiently complete requirements.  In both cases (under and over-performance), you should 

monitor whether the planned baseline is accurate. If not, then you should re-plan and move on. 

Finally, you should review the requirements growth curve at the end of the project to check the accuracy 

of your initial estimated baseline requirements. For example, perhaps you did not accommodate 

requirements accepted after project start, so next time you will add 5% to the total. You should also look 

at the shape of the requirements growth and how well it tracked against your baseline. Did they match 

during all phases, at the beginning, only at the end? Understanding these simple differences is a great 

start to delivering on schedule next time. 

Figure 12 – Requirements Implementation Status

Requirements Implementation Status

Managers need to know how well requirements are progressing through development activities. Instead 

of waiting until the last weeks of a project’s schedule and then assessing how many of them are done 

(when it is too late to do anything meaningful about it), a software manager should know as soon as 

possible that requirements are not being completed. If this measure is used during the fact, then the 

manager can assign resources or re-plan the schedule. This measure is an indicator of the rate at which 

your requirements are moving through your development pipeline. 

- 13 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT



© 2010 Distributive Management www.distributive.com

To track the status of implementation, you must measure the requirements moving through each 

development activity.  If we consider each unique development activity (such as analyze customer needs, 

develop requirements, design software, develop code, etc) to be a state, then we can measure the 

number of requirements that are completed during each state. This measure forms the basis for a 

requirements implementation status indicator. A typical set of states for implementation status could be: 

defined, approved, allocated, designed, implemented, tested and verified. 

A measure that shows the status of all requirements is essential in monitoring program status and acts as 

a scorecard to illustrate that requirements are being implemented. Early in the program schedule, ensure 

that requirements become defined, approved and designed as the system architecture is finalized.  Near 

the end of the program schedule, you should see requirements move from implemented status to tested 

then complete status. While valuable in detecting “requirements volatility”, this measure also supports 

monitoring efforts, configuration management and quality.

In the CMMI’s Requirements Management process area, one of the work products identified for sub-

process 1.3 “Manage Requirements Changes” is “requirements status.” This measure is vital for 

controlling requirements during the development process. 

Requirements Change Summary

Requirements change summary displays the type of requirements changes that are made each period.  

Change summary is useful in understanding the type of changes that are being made each period.  Type 

of requirement change means “added”, ”edited” and “deleted”. Remember that “deleted” requirements are 

no longer requirements so they cannot be counted unless the requirements tool provides a mechanism 

for listing the requirements that have been deleted. 

As the project proceeds, you will expect that the rate of change decreases, as requirements activities are 

completed and software development and test assumes the majority of resources. During the end or a 

software project, individual requirement additions or changes, especially at the top level, can have 

tremendous negative impact on the software product. 

- 14 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT

Figure 13 – Requirements Change Summary



© 2010 Distributive Management www.distributive.com

A typical requirements change summary graph would contain added, edited and deleted requirements per 

month. These three might be added to form the total number of changed requirements. You would enter 

values for the limit of acceptable changed requirements per period. The graph would also contain the total 

number of requirements along with a color-coded indicator bar. 

Requirements Allocation

Requirements allocation provides visibility into how many requirements are being implemented. 

Remember that a top-level requirement is usually allocated to another work product (such as a software 

design, software code/module or test plan). Eventually, all requirements are satisfied by being assigned to 

a work product that is actually developed or produced. Measuring requirements allocation shows how 

much work has been done on actually implementing requirements. 

Each requirement in a requirements document is allocated to a work product. Requirements allocation 

measures the completion percent of that allocation. For example, all the requirements in a URD (top-level 

requirements document) must be allocated before the software product can be considered complete. 

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT

Figure 13 – Requirements Allocation

Notice in figure 13 that we can see where the requirements for this requirements document have been 

allocated, primarily software.  In addition, we can also see that seven (7) requirements have not been 

allocated (shown in the “incomplete” bar). The number of incomplete is a potential risk since these must 

be implemented in one of the allocation targets. 



© 2010 Distributive Management www.distributive.com

Requirements allocation helps a manager in several key ways. By monitoring allocation, you are able to 

see how well analysts and requirements engineers are able to define and develop the software 

architecture. As requirements are defined and allocated, Requirements Allocation will show a nice 

pipeline of requirements being developed.  When there are problems, the pipeline will develop lumps, as 

unallocated requirements “pile up” in one work product. Additionally, you want to ensure that the 

requirements allocation itself is reasonable.  For example, if all URD requirements were allocated to 

software under development (and none to hardware, the operating system, supporting components like a 

database), this is cause for suspicion. 

- 15 -

Requirements Volatility

Requirements volatility provides status related to the amount or percent of requirements which change 

each period.  Volatility is of particular importance to a project manager since subsequent activities such 

as software design, development and testing depend on having stable requirements. 

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT

Figure 14 – Requirements Volatility

When requirements are volatile it means that these down stream activities must re-work their work 

product (e.g. code) to implement the changed requirement. Volatility at the beginning of a project is 

expected. However, at the end of a project a single change to a top level requirement could significantly 

delay a software product. 

A converse to volatility is requirements stability.  While volatility shows the percent of requirements that 

change each period, stability shows the percent of requirements that did not change each period. For 

example, if requirement volatility is 20% (of total requirements), then stability is 80% (of total). In most 

cases the graphs are interchangeable, such that any decision made with the volatility graph can be made 

with the stability graph. 



© 2010 Distributive Management www.distributive.com

Requirements TBDs

When requirement work products are first being developed, the engineer may not know the specific 

attributes of a requirement. As a placeholder for such a requirement, they might enter the text “tbd” (for “to 

be developed”) in their requirement tool. Requirement “tbd”s are useful for laying out the structure of a 

requirement work product, and for annotating where requirement definition is needed. Over time, the 

engineer replaces the “tbd” with actual requirement text, or removes it if it is un-needed.

From a management perspective, a “tbd” is serious potential problem (also called a “risk”) as it represents 

a requirement which has been identified but not defined (or implemented or tested). The following figure is 

a sample graph showing Requirement TBDs.

- 16 -

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT

Figure 15 – Requirements TBDs

To manage requirement “tbds”, you need to monitor the number of them each period and ensure that the 

number goes to zero. You should ensure that requirement documents that contain “tbds” are not 

considered complete. And, you should make sure that peer reviews and inspection activities do not 

review “tbds”. Ideally, all “tbds” should be removed from a requirement document in time for the document 

to be reviewed before being sent to the next down stream activity. For example, you should remove all 

“tbds” from the Software Requirements Specification at least two weeks before attempting to close the 

Software Requirements phase. 

Resources to Engineer and Manage Requirements

This section provides resources that you can use to find information about requirements engineering, 

requirements metrics and measurement, as well as requirements engineering tools. Commercial tools are 

available to support all aspects of requirements management.



© 2010 Distributive Management www.distributive.com- 18 -

The following table lists commercial tools that support requirements engineering. The leading tools 

provide a full range of training, services and support. Please contact Distributive Management to 

contribute other useful resources. 

SUMMARY

Hopefully, by this point in the document, you understand that measuring requirements engineering is 

critical, and that the methods for doing so are not difficult. As your organization matures and improves the 

requirements processes, you should make sure that the processes you create can also be managed. 

Even if you are not interested in a formal CMMI rating, the techniques described in this document can 

help you spot and correct project issues before your project becomes a death march. 

Requirements Management Guidance on the Web

Software Engineering Institute www.sei.cmu.edu

Distributive Management www.distributive.com/resources

Crosstalk Magazine from STSC www.stsc.hill.af.mil/crosstalk

Scott Ambler’s Web Site www.ambysoft.com

Karl Weiger’s Web Site www.processimpact.com

Company Product Web Site

Telelogic DOORS www.telelogic.com

IBM Rational RequisitePRO www.ibm.com/rational

Serena RTM www.serena.com

Borland CaliberRM www.borland.com

Steel Trace Catalyze www.steeltrace.com

CONTACT INFORMATION

For more information, please contact Distributive Management.

www.distributive.com

Distributive  Management

109 Olde Greenwich Drive, Suite 102

Fredericksburg, Virginia 22408

800.779.6306

540.891.8885 (fax)

sales@distributive.com

info@distributive.com

PUTTING “MANAGEMENT” INTO YOUR REQUIREMENTS  MANAGEMENT

The next table contains web sites which provide valuable information and guidance on all aspects of 

requirements engineering and management. Among the resources are process descriptions, checklists, 

quality criteria and other guidance. 

http://www.sei.cmu.edu/
http://www.distributive.com/resources
http://www.stsc.hill.af.mil/crosstalk
http://www.ambysoft.com/
http://www.processimpact.com/
http://www.telelogic.com/
http://www.ibm.com/rational
http://www.serena.com/
http://www.borland.com/
http://www.steeltrace.com/
http://www.distributive.com/
mailto:sales@distributive.com
mailto:info@distributive.com

